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The Helmholtz wave equation is linearized using the Feshbach–Villars procedure used
for linearizing the Klein–Gordon equation, based on the close algebraic analogy be-
tween the Helmholtz equation and the Klein–Gordon equation for a spin-0 particle.
The Foldy–Wouthuysen iterative diagonalization technique is then applied to the lin-
earized Helmholtz equation to obtain a Hamiltonian description for a system with
varying refractive index. The Hamiltonian has a wavelength-dependent part absent in
the traditional descriptions. Besides reproducing all the traditional quasi-paraxial terms,
our method leads to additional contributions dependent on the wavelength. Applied to
the axially symmetric graded-index fiber, this method results in wavelength-dependent
modifications of the paraxial behavior and the aberration coefficients to all orders. Ex-
plicit expression for the modified aberration coefficients to the third order are presented.
Sixth- and eighth-order Hamiltonians are also presented.
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1. INTRODUCTION

Historically, the scalar wave theory of optics (including aberrations to all
orders) is based on Fermat’s principle of least time. In this approach, the beam-
optical Hamiltonian is derived using Fermat’s principle. This approach is purely
geometrical and works adequately in the scalar regime. Later on it was realized
that the whole of optics is governed by Maxwell’s equations. All the laws of
geometrical optics can be deduced from Maxwell’s equations (Born and Wolf,
1999). This deduction is traditionally done using the Helmholtz equation, which
is derived from Maxwell’s equations. In this approach, one takes the square-root of
the Helmholtz operator followed by an expansion of the radical (Dragt et al., 1986;
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Dragt, 1998). It should be noted that the square-root approach reduces the original
boundary value problem to a first order initial value problem. This reduction is
of great practical value, since it leads to the powerful system or the Fourier optic
approach (Goodman, 1996). However, the beam-optical Hamiltonian in the square-
root approach is no different from the geometrical approach of Fermat’s principle.
Moreover, the reduction process itself can never be claimed to be rigorous or exact.

The purpose of this report is to present an alternate procedure for the reduc-
tion, based on the close algebraic analogy between the Helmholtz equation and
the Klein–Gordon equation for a spin-0 particle. Our approach, which uses the
algebraic machinery of quantum mechanics, provides a ‘natural’ procedure for the
reduction. Furthermore, our procedure gives rise to some interesting extra con-
tributions, modifying the beam-optical Hamiltonian of geometrical optics. This
results in the corrections to the beam optics even at the ‘paraxial-level’ (Khan
et al., 2002).

The Helmholtz equation governing scalar optics is algebraically very simi-
lar to the Klein–Gordon equation for a spin-0 particle. Exploiting this similarity,
the Helmholtz equation is linearized in a procedure very similar to the one due
to Feshbach–Villars for linearizing the Klein–Gordon equation. This brings the
Helmholtz equation to a Dirac-like form enabling the procedure of the Foldy–
Wouthuysen expansion used in the Dirac electron theory. This approach, which
uses the algebraic machinery of quantum mechanics, was developed recently
(Khan et al., 2002), providing an alternative to the traditional square-root pro-
cedure. The formalism presented here gives rise to wavelength-dependent con-
tributions modifying the aberration coefficients. The algebraic machinery of this
formalism is very similar to the one used in the quantum theory of charged-
particle beam optics, based on the Dirac (Jagannathan et al., 1989; Jagannathan,
1990; Jagannathan, 1993) and the Klein–Gordon (Khan and Jagannathan, 1995)
equations respectively. The detailed account for both of these is available in
(Jagannathan and Khan, 1996). A treatment of beam optics taking into account the
anomalous magnetic moment is available in (Conte et al., 1996; Jagannathan and
Khan, 1997; Khan, 1997; Jagannathan and Khan, 1998). A complete coverage to
the new field of Quantum Aspects of Beam Physics (QABP), can be found in the
proceedings of the series of meetings under the same name (Chen, 1999).

Using our approach, we derive general expressions for the Hamiltonians
without assuming any specific form for the refractive index. These Hamiltonians
are shown to contain extra wavelength-dependent contributions, which arise very
naturally in our approach. We apply the general formalism to the specific examples:

A. Medium with constant refractive index. This example is essentially for
illustrating some of the details of the machinery used.

B. Axially symmetric graded-index medium. This example is used to
demonstrate the power of the formalism. The traditional approaches



Wavelength-Dependent Modifications in Helmholtz optics 97

give six third-order aberrations. Our formalism modifies these six aber-
ration coefficients by wavelength-dependent contributions. Sixth- and
eighth-order Hamiltonians are also derived for this system. All the as-
sociated machinery used in this formalism is described in the text and
the appendices.

The traditional beam optics (in particular, the Lie algebraic formalism of
light beam optics) (Dragt et al., 1986; Dragt, 1998) is completely obtained from
our approach in the limit wavelength, –λ −→ 0, which we call the traditional
limit of our formalism. This is analogous to the classical limit obtained by taking
the reduced Planck’s constant h = h/2π −→ 0, in the quantum prescriptions.
The scheme of using the Foldy–Wouthuysen machinery in this formalism is very
similar to the one used in the quantum theory of charged-particle beam optics,
developed in recent years (Jagannathan et al., 1989; Jagannathan, 1990, 1993;
Khan and Jagannathan, 1995; Jagannathan and Khan, 1996, 1997, 1998; Conte
et al., 1996; Khan, 1997). There too one recovers the classical prescriptions (in
particular, the Lie algebraic formalism of charged-particle beam optics (Turchetti
et al., 1989; Todesco, 1999)) in the limit –λ0 −→ 0, where –λ0 = h/p0 is the reduced
de Broglie wavelength and p0 is the design momentum of the system under study.

In this report we focus on the Hamiltonian description of beam optics, as is
customary in the traditional prescriptions of beam optics. This also enables us to
relate our formalism with the traditional prescriptions, such as the Lie algebraic
formalism and the quantum-like approach (Fedele and Man’ko, 1999).

2. TRADITIONAL PRESCRIPTIONS

In the traditional scalar wave theory for treating monochromatic quasi-
paraxial light beam propagating along the positive z-axis, the z-evolution of the
optical wave function ψ(r) is taken to obey the Schrödinger-like equation

i–λ
∂

∂z
ψ(r) = Ĥψ(r), (1)

where the optical Hamiltonian Ĥ is formally given by the radical

Ĥ = −(n2(r) − p̂2
⊥)1/2, (2)

and n(r) = n(x, y, z) is the varying refractive index. In beam optics, the rays are
assumed to propagate almost parallel to the optic-axis, chosen to be z-axis, here.
That is, |̂p⊥| � pz ≈ 1 and |n(r) − n0| � n0. The refractive index is the order of
unity. Let us further assume that the refractive index varies smoothly around the
constant background value n0 without any abrupt jumps or discontinuities. For a
medium with uniform refractive index, n(r) = n0 and the Taylor expansion of the
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radical is

(n2(r) − p̂2
⊥)1/2 = n0

{
1 − 1

n2
0

p̂2
⊥

}1/2

= n0

{
1 − 1

2n2
0

p̂2
⊥ − 1

8n4
0

p̂4
⊥ − 1

16n6
0

p̂6
⊥

− 5

128n8
0

p̂8
⊥ − 7

256n10
0

p̂10
⊥ − · · ·

}
. (3)

In the earlier expansion, one retains terms to any desired degree of accuracy in
powers of ( 1

n2
0
p̂2

⊥). In general, the refractive index is not a constant and varies.

The variation of the refractive index, n(r) is expressed as a Taylor expansion in
the spatial variables x, y with z-dependent coefficients. To get the beam-optical
Hamiltonian, one makes the expansion of the radical as before, and retains terms
to the desired order of accuracy in ( 1

n2
0
p̂2

⊥) along with all the other terms (coming

from the expansion of the refractive index n(r)) in the phase-space components
up to the same order. In this expansion procedure, the problem is partitioned into
paraxial behavior + aberrations, order-by-order.

3. THE FOLDY–WOUTHUYSEN FORMALISM

In the traditional scheme, the purpose of expanding the beam-optical
Hamiltonian Ĥ = −(n2(r) − p̂2

⊥)1/2 in a series, is to understand the propaga-
tion of the quasi-paraxial beam in terms of a series of approximations (paraxial
+ nonparaxial). In relativistic quantum mechanics too, one has the problem of
understanding the behavior in terms of nonrelativistic limit + relativistic correc-
tions terms in the quasi-relativistic regime, order-by-order. For the Dirac equation
(which is first order in time) this is done using the Foldy–Wouthuysen transfor-
mation leading to an iterative diagonalization technique (Foldy and Wouthuysen,
1950; Bjorken and Drell, 1964). For the Klein–Gordon equation (which is second
order in time) this is done using the same Foldy–Wouthuysen technique after lin-
earizing it with respect to time, and thus bringing it to a Dirac-like form, following
the Feshbach–Villars method (Feshbach and Villars, 1958). Here, we follow a
procedure very similar to the one used for linearizing the Klein–Gordon equa-
tion via the Feshbach–Villars linearizing procedure (Feshbach and Villars, 1958).
The resulting Feshbach–Villars-like form has an algebraic structure very similar
to the Dirac equation. This enables us to make an expansion using the Foldy–
Wouthuysen transformation technique well known in the Dirac electron theory
(Foldy and Wouthuysen, 1950; Bjorken and Drell, 1964). The resulting expan-
sion reproduces the aforementioned expression in (3) as it should. Furthermore,
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it gives rise to a set of wavelength-dependent contributions. The analogy between
the Helmholtz wave equation and the Klein–Gordon equation suggests naturally
a similar technique for treating the scalar wave theory of light beams. Though
the suggestion to employ the Foldy–Wouthuysen technique in the case of the
Helmholtz equation existed in the literature as a remark (Fishman and McCoy,
1984), it has been exploited only now, to analyze the quasi-paraxial approxima-
tions (Khan et al., 2002). The formalism presented here is an elaboration of the
work initiated in (Khan et al., 2002), providing an alternative to the traditional
square-root approach.

We start with the wave equation in the rectilinear coordinate system.{
∇2 − n2(r)

v2

∂2

∂t2

}
� = 0. (4)

Let

� = ψ(r)e−iωt , ω > 0, (5)

then {
∇2 + n2(r)

v2
ω2

}
ψ(r) = 0. (6)

At this stage, we introduce the wavization,

−i–λ∇⊥ −→ p̂⊥, −i–λ
∂

∂z
−→ pz, (7)

where –λ = λ/2π is the reduced wavelength, c = –λω and n(r) = c/v(r). It is
to be noted that pq − qp = −i–λ. This is similar to the commutation relation,
(pq − qp) = −ih, in quantum mechanics. In our formalism, –λ plays the same
role that is played by the reduced Planck’s constant, h in quantum mechanics. The
traditional beam-optics formalism is completely obtained from our formalism in
the limit –λ −→ 0. Then, we get,{(

−i–λ
∂

∂z

)2

+ (̂p2
⊥ − n2(r))

}
ψ(r) = 0. (8)

Next, we linearize Eq. (8) following a procedure similar to the one which
gives the Feshbach–Villars (Feshbach and Villars, 1958) form of the Klein–Gordon
equation. To this end, let(

ψ1(r)

ψ2(r)

)
=

(
ψ(r)

−i
–λ
n0

∂
∂z

ψ(r)

)
. (9)
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Written as a first-order system, the Helmholtz equation now reads

−i
–λ

n0

∂

∂z

(
ψ1(r)

ψ2(r)

)
=

(
0 1

1
n2

0
(n2(r) − p̂2

⊥) 0

) (
ψ1(r)

ψ2(r)

)
. (10)

Next, we make the transformation,(
ψ1 (r)

ψ2 (r)

)
−→ �(1) =

(
ψ+ (r)

ψ− (r)

)
= M

(
ψ1(r)

ψ2(r)

)

= 1√
2

(
ψ1(r) + ψ2(r)

ψ1(r) − ψ2(r)

)

= 1√
2

(
ψ(r) − i

–λ
n0

∂
∂z

ψ(r)

ψ(r) + i
–λ
n0

∂
∂z

ψ(r)

)
(11)

where

M = M−1 = 1√
2

(
1 1

1 −1

)
, det M = −1. (12)

It is to be noted that the transformation matrix M is independent of z. For
a monochromatic quasi-paraxial beam (in forward direction), with leading
z-dependence ψ(r) ∼ exp {in(r)z/–λ}. Then

ψ+ ∼ 1√
2

{
1 + n(r)

n0

}
ψ(r),

ψ− ∼ 1√
2

{
1 − n(r)

n0

}
ψ(r). (13)

Since, |n(r) − n0| � n0, we have ψ+ � ψ−. Consequently, Eq. (8) can be written
as

i–λ
∂

∂z

(
ψ+(r)

ψ−(r)

)
= Ĥ

(
ψ+(r)

ψ−(r)

)
,

Ĥ = −n0σz + Ê + Ô

Ê = 1

2n0

{̂
p2

⊥ + (
n2

0 − n2(r)
)}

σz

Ô = 1

2n0

{̂
p2

⊥ + (
n2

0 − n2(r)
)}

(iσy), (14)
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where σy and σz are, respectively, the y and z components of the triplet of Pauli
matrices,

σ =
[

σx =
(

0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)]
. (15)

It is to be noted that the even-part and odd-part in Hamiltonian (14) differ only
by a Pauli matrix. This simplifies the computations a lot as we shall see, shortly.
The details of the Feshbach–Villars linearizing procedure for the Klein–Gordon
equation are available in Appendix A.

The square of the Hamiltonian in (14) is

Ĥ2 = (n2(r) − p̂2
⊥), (16)

as expected. Thus, we have taken the square root in a different way. Our procedure
of taking the square root is based on the experience of the Klein–Gordon equation
and has certain advantages over the traditional procedure of directly taking the
square root.

The purpose of casting Eq. (8) in the form of Eq. (14) will be obvious now,
when we compare the latter with the Dirac equation

ih
∂

∂t

(
�u

�l

)
= ĤD

(
�u

�l

)
ĤD = m0c

2β + ÊD + ÔD

ÊD = qφ

ÔD = cα · π̂ , (17)

where ‘u’ and ‘l’ stand for the upper and lower components, respectively, and

α =
[

0 σ

σ 0

]
, β =

[
11 0
0 −11

]
, 11 =

[
1 0
0 1

]
. (18)

To proceed further, we note the striking similarities between Eq. (14) and
Eq. (17). In the nonrelativistic positive energy case, the upper components �u are
large compared to the lower components �l. The odd (Ô) part of (ĤD − m0c

2β),
anticommuting with β couples the large �u to �l, while the even (Ê) part com-
muting with β, does not couple them. Using this fact, the well known Foldy–
Wouthuysen formalism of the Dirac electron theory (see, e.g., Bjorken and Drell,
1964) employs a series of transformations on Eq. (17) to reach a representation in
which the Hamiltonian is a sum of the nonrelativistic part and a series of relativistic
correction terms; |cπ̂ |/m0c

2 serves as the expansion parameter and the nonrela-
tivistic part corresponds to an approximation of order up to |cπ̂ |/m0c

2. The terms
of higher order in |cπ̂ |/m0c

2 constitute the relativistic corrections. Examining
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Eq. (14), we conclude ψ+ � ψ−, and the odd operator Ô, anticommuting with
σz, couples the large ψ+ with the small ψ−, while the even operator Ê does not
make such a coupling. This spontaneously suggests that a Foldy–Wouthuysen-
like technique can be used to transform Eq. (14) into a representation in which
the corresponding beam-optical Hamiltonian is a series with expansion parame-
ter |̂p⊥|/n0. The correspondence between the beam-optical Hamiltonian (14) and
the Dirac electron theory is summarized in a table in Appendix B. The Foldy–
Wouthuysen technique iteratively takes the field to a new representation, where the
forward-propagating components get progressively decoupled from the backward-
propagating components.

Application of the Foldy–Wouthuysen-like technique to Eq. (14) involves a
series of transformations on it and after the required number of transformations,
depending on the degree of accuracy, Eq. (14) is transformed into a form in
which the residual odd part can be neglected and hence the upper and lower
components (ψ+ and ψ−) are effectively decoupled. In this representation, the
larger component (ψ+) corresponds to the beam moving in the +z-direction and
the smaller component (ψ−) corresponds to the backward-moving component of
the beam.

Using the correspondence between Eqs. (14) and (17) the Foldy–Wouthuysen
expansion given formally in terms of Ê and Ô leads to the Hamiltonian

i–λ
∂

∂z
|ψ〉 = Ĥ(2)|ψ〉,

Ĥ(2) = −n0σz + Ê − 1

2n0
σzÔ2. (19)

To simplify the formal Hamiltonian we use, Ô2 = − 1
4n2

0
{̂p2

⊥ + (n2
0 − n2(r))}2

and recall that Ê = 1
2n0

{̂p2
⊥ + (n2

0 − n2(r))}σz. We are primarily interested in the
forward-propagating beam; so we drop σz. Then the formal Hamiltonian in (19)
is expressed in terms of the phase-space variables as:

Ĥ(2) = −n0 + 1

2n0

{̂
p2

⊥ + (
n2

0 − n2(r)
)} + 1

8n3
0

{̂
p2

⊥ + (
n2

0 − n2(r)
)}2

. (20)

The Foldy–Wouthuysen iterative procedure is described in Appendix B. The
lowest-order Hamiltonian obtained in this procedure agrees with the traditional
approaches, as it should.

To go beyond the expansions in (20), one goes a step further in the Foldy–
Wouthuysen iterative procedure. To next-to-leading order the Hamiltonian is for-
mally given by

i–λ
∂

∂z
|ψ〉 = Ĥ(4)|ψ〉,
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Ĥ(4) = −n0σz + Ê − 1

2n0
σzÔ2

− 1

8n2
0

[
Ô,

(
[Ô, Ê] + i–λ

∂

∂z
Ô

)]

+ 1

8n3
0

σz

{
Ô4 +

(
[Ô, Ê] + i–λ

∂

∂z
Ô

)2
}

. (21)

As before, we drop the σz and the resulting Hamiltonian in the phase-space
variable is

Ĥ(4) = −n0 + 1

2n0

{̂
p2

⊥ + (
n2

0 − n2(r)
)}

+ 1

8n3
0

{̂
p2

⊥ + (
n2

0 − n2(r)
)}2

− i–λ

32n4
0

[̂
p2

⊥,
∂

∂z
(n2(r))

]

+
–λ2

32n5
0

(
∂

∂z
(n2(r))

)2

+ 1

16n5
0

{̂
p2

⊥ + (
n2

0 − n2(r)
)}3

+ 5

128n7
0

{̂
p2

⊥ + (
n2

0 − n2(r)
)}4

. (22)

The Hamiltonian thus derived has all the terms, which one gets in the traditional
square-root approach. In addition, we also get the wavelength-dependent contri-
butions. Before proceeding further, let us examine the leading order modifications
to the paraxial Hamiltonian

Ĥ(p) = −n0 + 1

2n0

{̂
p2

⊥ + (
n2

0 − n2(r)
)} − i–λ

32n4
0

[̂
p2

⊥,
∂

∂z
(n2(r))

]
. (23)

It is clear that the paraxial Hamiltonian has an extra term, the commutator term.
This term is always present as long as the refractive index has inhomogeneities.
Such a term does not arise in the traditional prescriptions.

The details of the various transforms and the beam-optical formalism being
discussed here turns out to be a simplified analog of the more general formal-
ism developed recently for the quantum theory of charged-particle beam op-
tics, (Jagannathan et al., 1989; Jagannathan, 1990, 1993; Khan and Jagannathan,
1995; Jagannathan and Khan, 1996, 1997, 1998; Conte et al., 1996; Khan, 1997),
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both in the scalar and the spinor cases, respectively. A very detailed descrip-
tion of these transforms and techniques is available in (Jagannathan and Khan,
1996).

Now, we can compare the aforementioned Hamiltonians with the conven-
tional Hamiltonian given by the square-root approach (Dragt, 1998). The square-
root approach does not give all the terms, such as the one involving the commutator
of p2

⊥ with ∂
∂z

(
n2(r)

)
. Our procedure of linearization and expansion in powers of

|̂p⊥|/n0 gives all the terms, which one gets by the square-root expansion of
(3) and some additional terms, which are the wavelength-dependent terms. Such
wavelength-dependent terms can in no way be obtained by any of the conventional
prescriptions, starting with the Helmholtz equation (6).

4. APPLICATIONS

In the previous sections, we presented an alternative to the square-root expan-
sion and obtained an expansion for the beam-optical Hamiltonian, which works to
all orders. Formal expressions were obtained for the paraxial Hamiltonian and the
leading order aberrating Hamiltonian, without assuming any form for the refrac-
tive index. Even at the paraxial level the wavelength-dependent effects manifest by
the presence of a commutator term, which does not vanish for a varying refractive
index.

Now, we apply the formalism to specific examples. First one is the medium
with a constant refractive index. This is perhaps the only problem, which can be
solved exactly in a closed form expression. This example is just to illustrate how
the aberration expansion in our formalism can be summed to give the familiar
exact result.

The next example is that of the axially symmetric graded-index medium.
This example enables us to demonstrate the power of the formalism, reproducing
the familiar results from the traditional approaches and further giving rise to new
results, dependent on the wavelength.

4.1. Medium with Constant Refractive Index

Constant refractive index is the simplest possible system. In our formalism,
this is perhaps the only case where it is possible to do an exact diagonalization. This
is very similar to the exact diagonalization of the free Dirac Hamiltonian. From
the experience of the Dirac theory we know that there are hardly any situations,
where one can do the exact diagonalization. One necessarily has to resort to some
approximate diagonalization procedure. The Foldy–Wouthuysen transformation
scheme provides the most convenient and accurate diagonalization to any desired
degree of accuracy. So, we have adopted the Foldy–Wouthuysen scheme in our
formalism.
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For a medium with constant refractive index, n(r) = nc, we have,

Ĥc = −n0σz + Dσz + D(iσy)

D = 1

2n0

{̂
p2

⊥ + (
n2

0 − n2
c

)}
. (24)

The Hamiltonian in (24) can be exactly diagonalized by the following transforma-
tion,

T ± = exp [i(±iσz)Ôθ ]

= exp [∓σxDθ ]

= cosh (Dθ ) ∓ σx sinh (Dθ ). (25)

We choose,

tanh (2Dθ ) = D
n0 − D = n2

0 − (
n2

c − p̂2
⊥
)

n2
0 + (

n2
c + p̂2

⊥
) < 1, (26)

then we obtain,

Ĥdiagonal
c = T +ĤcT

−

= T +{−n0σz + Dσz + D(iσy)}T −

= −σz

{
n2

0 − 2n0D
} 1

2

= −σz

{
n2

c − p̂2
⊥
} 1

2 . (27)

We next, compare the exact result thus obtained with the approximate one, ob-
tained through the systematic series procedure we have developed. We define
P = 1

n2
0
{̂p2

⊥ + (n2
0 − n2

c)}. Then,

Ĥ(4)
c = −n0

{
1 − 1

2
P − 1

8
P 2 − 1

16
P 3 − 5

128
P 4

}
σz

≈ −n0{1 − P 2} 1
2

= −{
n2

c − p̂2
⊥
} 1

2

= Ĥdiagonal
c . (28)

Knowing the Hamiltonian, we can compute the transfer maps. The transfer
operator between any pair of points {(z′′, z′)|z′′ > z′} on the z-axis, is formally
given by

|ψ(z′′, z′)| = T̂ (z′′, z′)|ψ(z′′, z′)〉, (29)
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with

i–λ
∂

∂z
T̂ (z′′, z′) = ĤT̂ (z′′, z′), T̂ (z′′, z′) = Î,

T̂ (z′′, z′) = ℘

{
exp

[
− i

–λ

∫ z′′

z′
dz Ĥ(z)

]}

= Î − i
–λ

∫ z′′

z′
dzĤ(z) +

(
− i

–λ

)2 ∫ z′′

z′
dz

∫ z

z′
dz′Ĥ(z)Ĥ(z′) + · · · ,

(30)

where Î is the identity operator and ℘ denotes the path-ordered exponential. There
is no closed form expression for T̂ (z′′, z′) for an arbitrary choice of the refractive
index n(r). In such a situation, the most convenient form of the expression for the
z-evolution operator T̂ (z′′, z′), or the z-propagator, is

T̂ (z′′, z′) = exp

[
− i

–λ
T̂ (z′′, z′)

]
, (31)

with

T̂ (z′′, z′) =
∫ z′′

z′
dzĤ(z) + 1

2

(
− i

–λ

) ∫ z′′

z′
dz

∫ z

z′
dz′[Ĥ(z), Ĥ(z′)] + · · · , (32)

as given by the Magnus (1954) formula, which is described in detail in Appendix
C. We shall be needing these expressions in the next example where the refractive
index is not a constant.

Using the procedure outlined earlier, we compute the transfer operator,

Ûc (zout, zin) = exp

[
− i

–λ
�zHc

]

= exp

[
+ i

–λ
nc�z

{
1 − 1

2

p̂2
⊥

n2
c

− 1

8

(
p̂2

⊥
n2

c

)2

− · · ·
}]

,

�z = zout − zin, (33)

where ‘in’ and ‘out’ are the ‘input’ and ‘output’ plains along the optic-axis at the
points zin and zout, respectively. Using (33), we compute the transfer maps(

〈r⊥〉
〈p⊥〉

)
out

=
(

1 1√
n2

c−p2
⊥
�z

0 1

) (
〈r⊥〉
〈p⊥〉

)
in

. (34)

The beam-optical Hamiltonian is intrinsically aberrating. Even for the simplest
situation of a constant refractive index, we have aberrations to all orders!
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4.2. Axially Symmetric Graded-Index Medium

We just saw the treatment of the medium with a constant refractive index.
This is perhaps the only problem which can be solved exactly in a closed form
expression. This example was just to illustrate how the aberration expansion in
our formalism can be obtained. We now consider the next example. The refrac-
tive index of an axially symmetric graded-index material can be most generally
described by the following polynomial (see, pp. 117 in Dragt et al., 1986)

n(r) = n0 + α2(z)r2
⊥ + α4(z)r4

⊥ + α6(z)r6
⊥ + α8(z)r8

⊥ + · · · , (35)

where we have assumed the axis of symmetry to coincide with the optic-axis,
namely the z-axis without any loss of generality. To write the beam-optical
Hamiltonians we introduce the following notation

T̂ = (̂p⊥ · r⊥ + r⊥ · p̂⊥)

w1(z) = d

dz
{2n0α2(z)}

w2(z) = d

dz

{
α2

2(z) + 2n0α4(z)
}

w3(z) = d

dz
{2n0α6(z) + 2α2(z)α4(z)}

w4(z) = d

dz

{
α2

4(z) + 2α2(z)α6(z) + 2n0α8(z)
}
. (36)

We also use, [A,B]+ = (AB + BA). The beam-optical Hamiltonian is

Ĥ = Ĥ0,p + Ĥ0,(4) + Ĥ0,(6) + Ĥ0,(8) + Ĥ
(–λ)
0,(2) + Ĥ

(–λ)
0,(4) + Ĥ

(–λ)
0,(6) + Ĥ

(–λ)
0,(8)

Ĥ0,p = −n0 + 1

2n0
p̂2

⊥ − α2(z)r2
⊥

Ĥ0,(4) = 1

8n3
0

p̂4
⊥ − α2(z)

4n2
0

(̂p2
⊥r2

⊥ + r2
⊥p̂2

⊥) − α4(z)r4
⊥

Ĥ0,(6) = 1

16n5
0

p̂6
⊥ − α2(z)

8n4
0

{(̂p4
⊥r2

⊥ + r2
⊥p̂4

⊥) + p̂2
⊥r2

⊥p̂2
⊥}

+ 1

8n3
0

{(
α2

2(z) − 2n0α4(z)
)

(̂p2
⊥r4

⊥ + r4
⊥p̂2

⊥) + 2α2
2(z)r2

⊥p̂2
⊥r2

⊥
}− α6(z)r6

⊥

Ĥ0,(8) = 5

128n7
0

p̂8
⊥ − 5α2(z)

64n6
0

[̂p4
⊥, [̂p2

⊥r2
⊥]+]+

+ 1

32n5
0

{ (
3α2

2(z) − 4n0α4(z)
)

[̂p4
⊥, r4

⊥]+ + 5α2
2(z)[̂p2

⊥, r2
⊥]2

+
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− (
2α2

2(z) + 4n0α4(z)
)

p̂2
⊥r4

⊥p̂2
⊥
}

+ 1

16n4
0

{
4
(
α3

2(z) + n0α2(z)α4(z) + n2
0α6(z)

)
[̂p2

⊥, r6
⊥]+

− 5α3
2(z)[r4

⊥, [̂p2
⊥, r2

⊥]+]+

+ (
2α3

2(z) + 4n0α2(z)α4(z)
)

[r2
⊥, r2

⊥p̂2
⊥r2

⊥]+
}

−α8(z)r8
⊥

Ĥ
(–λ)
0,(2) = −

–λ2

16n4
0

{
d

dz
(n0α2(z))

}
T̂

Ĥ
(–λ)
0,(4) = −

–λ2

32n4
0

w2(z)(r2
⊥T̂ + T̂ r2

⊥) +
–λ2

32n5
0

w2
1(z)r4

⊥

Ĥ
(–λ)
0,(6) = − 3–λ2

32n4
0

w3(z)(r4
⊥T̂ + T̂ r4

⊥) +
–λ2

16n5
0

w1(z)w2(z)r6
⊥

Ĥ
(–λ)
0,(8) = −

–λ2

8n4
0

w4(z)(r6
⊥T̂ + T̂ r6

⊥)

+
–λ2

32n5
0

{
w2

2(z) + 2w1(z)w3(z)
}
r8
⊥. (37)

The reason for partitioning Ĥ in the aforementioned manner will be clear as we
proceed.

4.2.1. The Paraxial Hamiltonian

For this system, the commutator term modifies the paraxial Hamiltonian as

Ĥ(2) = Ĥ0,p + Ĥ
(–λ)
0,(2)

= −n0 + 1

2n0
p̂2

⊥ − α2(z)r2
⊥ −

–λ2

16n3
0

{
d

dz
α2(z)

}
(̂p⊥ · r⊥ + r⊥ · p̂⊥) .

(38)

The extra term in the aforementioned equation is bound to have a bearing on the
beam optics of the system.

The paraxial transfer maps are formally given by(
〈r⊥〉
〈p⊥〉

)
out

=
(

P Q

R S

) (
〈r⊥〉
〈p⊥〉

)
in

, (39)
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where P , Q, R and S are the solutions of the paraxial Hamiltonian in (37). The
symplecticity condition tells us that PS − QR = 1. In this particular case from
the structure of the paraxial equations, we can further conclude that: R = P ′ and
S = Q′ where ( )′ denotes the z-derivative.

4.2.2. Aberrations

The Hamiltonian Ĥ0,(4) is the one we have in the traditional prescriptions and
is responsible for the six aberrations. Ĥ (–λ)

0,(4) modifies the six aberrations mentioned
earlier by wavelength-dependent contributions. These six aberrations are:

Symbol Polynomial Name

C p̂4
⊥ Spherical aberration

K [̂p2
⊥, (̂p⊥ · r⊥ + r⊥ · p̂⊥)]+ Coma

A (̂p⊥ · r⊥ + r⊥ · p̂⊥)2 Astigmatism

F (̂p2
⊥r2

⊥ + r2
⊥p̂2

⊥) Curvature of field

D [r2
⊥, (̂p⊥ · r⊥ + r⊥ · p̂⊥)]+ Distortion

E r4
⊥ Nameless? or POCUS

The name POCUS is used in (Dragt et al., 1986) on page 137.
The transfer operator is most accurately expressed in terms of the paraxial

solutions, P , Q, R and S, via the interaction picture (Dragt and Forest, 1986).

T̂ (z, z0) = exp

[
− i

–λ
T̂ (z, z0)

]
,

= exp

[
− i

–λ

{
C(z

′′
, z′ )̂p4

⊥

+K(z
′′
, z′)[̂p2

⊥, (̂p⊥ · r⊥ + r⊥ · p̂⊥)]+

+A(z′′, z′) (̂p⊥ · r⊥ + r⊥ · p̂⊥)2

+F (z′′, z′)(̂p2
⊥r2

⊥ + r2
⊥p̂2

⊥)

+D(z′′, z′)[r2
⊥, (̂p⊥ · r⊥ + r⊥ · p̂⊥)]+

+E(z′′, z′)r4
⊥

}]
. (40)

The six aberration coefficients are given by,

C(z′′, z′) =
∫ z′′

z′
dz

{
1

8n3
0

S4 − α2(z)

2n2
0

Q2S2 − α4(z)Q4 −
–λ2

8n4
0

w2(z)Q3S
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+
–λ2

32n5
0

w2
1(z)Q4

}
,

K(z′′, z′) =
∫ z′′

z′
dz

{
1

8n3
0

RS3 − α2(z)

4n2
0

QS(PS + QR) − α4(z)PQ3

−
–λ2

32n4
0

w2(z)(Q2(PS + QR) + 2PQ2S)

+
–λ2

32n5
0

w2
1(z)PQ3

}
,

A(z′′, z′) =
∫ z′′

z′
dz

{
1

8n3
0

R2S2 − α2(z)

2n2
0

P QRS − α4(z)P 2Q2

−
–λ2

16n4
0

w2(z)(PQ(PS + QR))

+
–λ2

32n5
0

w2
1(z)P 2Q2

}
,

F (z′′, z′) =
∫ z′′

z′
dz

{
1

8n3
0

R2S2 − α2(z)

4n2
0

(P 2S2 + Q2R2) − α4(z)P 2Q2

−
–λ2

16n4
0

w2(z)(PQ(PS + QR))

+
–λ2

32n5
0

w2
1(z)P 2Q2

}
,

D(z′′, z′) =
∫ z′′

z′
dz

{
1

8n3
0

R3S − α2(z)

4n2
0

PR(PS + QR) − α4(z)P 3Q

−
–λ2

32n4
0

w2(z)(P 2(PS + QR) + 2P 2QR)

+
–λ2

32n5
0

w2
1(z)P 3Q

}
,

E(z′′, z′) =
∫ z′′

z′
dz

{
1

8n3
0

R4 − α2(z)

2n2
0

P 2R2 − α4(z)P 4

−
–λ2

8n4
0

w2(z)(P 3R)
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+
–λ2

32n5
0

w2
1(z)P 4

}
. (41)

Thus, we see that the transfer operator and the aberration coefficients are modified
by –λ-dependent contributions. The traditional beam optics is obtained in the limit
–λ −→ 0. The sixth- and eighth-order Hamiltonians are modified by the presence
of wavelength-dependent terms. These will in turn modify the fifth- and seventh-
order aberrations, respectively.

5. CONCLUDING REMARKS

We exploited the similarities between the Helmholtz equation and the Klein–
Gordon equation to obtain an alternate prescription for the aberration expansion.
In this prescription, we followed a procedure due to Feshbach–Villars for lin-
earizing the Klein–Gordon equation. After casting the Helmholtz equation to this
linear form, it was further possible to use the Foldy–Wouthuysen transformation
technique of the Dirac electron theory. This enabled us to obtain the beam-optical
Hamiltonian to any desired degree of accuracy. We further get the wavelength-
dependent contributions at each order, starting with the lowest-order paraxial
Hamiltonian. Formal expressions were obtained for the paraxial and leading or-
der aberrating Hamiltonians, without making any assumptions on the form of the
refractive index.

It is interesting that the extra commutator term − i–λ
32n4

0
[̂p2

⊥, ∂
∂z

(n2(r))] in (22)
contributes a correction to the optical Hamiltonian, even at the ‘paraxial-level,’
when the refractive index of the medium suffers both longitudinal and transverse
inhomogeneities. Such a z-derivative term is not natural to the traditional power se-
ries expansion. This commutator term originates from − 1

8n2
0
[Ô, ([Ô, Ê] + i–λ ∂

∂z
Ô)]

in the expression for Ĥ(4) in (22). In the Foldy–Wouthuysen formalism of the Dirac
theory the corresponding commutator term is responsible for the correct expla-
nation of the spin-orbit energy (including the Thomas precession effect) and the
Darwin term (attributed to the zitterbewegung) (see Section 4.3 of Bjorken and
Drell, 1964). Similarly, in the nonrelativistic reduction and interpretation of the
Klein–Gordon equation using the Foldy–Wouthuysen transformation theory such
a commutator term corresponds to the Darwin term correcting the classical elec-
trostatic interaction of a point charge in analogy to the zitterbewegung of the Dirac
electron (see Section 9.7 of Bjorken and Drell, 1964). In the quantum theory of
beam optics of charged Klein–Gordon and Dirac particles (Khan and Jagannathan,
1995; Jagannathan and Khan, 1996, 1997, 1998; Conte et al., 1996; Khan, 1997)
the corresponding terms add to the Hamiltonian the lowest order quantum cor-
rections to the classical aberration terms. In view of this analogy, it should be of
interest to study the effect of this correction term to the optical Hamiltonian.

As an example, we considered the medium with a constant refractive index.
This is perhaps the only problem, which can be solved exactly, in a closed form
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expression. This example was primarily for illustrating certain aspects of the
machinery we have used. The second, and the more interesting example is that
of the axially symmetric graded-index medium. For this system, we derived the
beam-optical Hamiltonians to eighth order. At each order, we find the wavelength-
dependent contributions. The fourth-order Hamiltonian was used to obtain the
six, third-order aberrations coefficients which get modified by the wavelength-
dependent contributions. Explicit relations for these coefficients were presented. In
the limit –λ −→ 0, the alternate prescription here, reproduces the very well known
Lie Algebraic Formalism of Light Optics (Dragt, 1998). It would be worthwhile
to look for the extra wavelength-dependent contributions experimentally.

The close analogy between geometrical optics and charged-particle has been
known for too long a time. Until recently, it was possible to see this analogy only
between the geometrical optics and classical prescriptions of charged-particle
optics. A quantum theory of charged-particle optics was presented in recent years
(Jagannathan et al., 1989; Jagannathan, 1990, 1993; Khan and Jagannathan, 1995;
Jagannathan and Khan, 1996, 1997, 1998; Conte et al., 1996; Khan, 1997). With
the current development of the non-traditional prescriptions of Helmholtz optics
(Khan et al., 2002) and the matrix formulation of Maxwell optics, using the rich
algebraic machinery of quantum mechanics, it is now possible to see a parallel
of the analogy at each level. The non-traditional prescription of the Helmholtz
optics is in close analogy with the quantum theory of charged-particles based on
the Klein–Gordon equation (Khan, 2002).

APPENDIX A: THE FESHBACH—VILLARS
FORM OF THE KLEIN—GORDON EQUATION

The method we have followed to cast the time-independent Klein–Gordon
equation into a beam-optical form linear in ∂

∂z
, suitable for a systematic study,

through successive approximations, using the Foldy–Wouthuysen-like transfor-
mation technique borrowed from the Dirac theory, is similar to the way the time-
dependent Klein–Gordon equation is transformed (Feshbach and Villars, 1958) to
the Schrödinger form, containing only first-order time derivative, in order to study
its nonrelativistic limit using the Foldy–Wouthuysen technique (see, e.g., Bjorken
and Drell, 1964).

Defining

� = ∂

∂t
�, (A.1)

the free particle Klein–Gordon equation is written as

∂

∂t
� =

(
c2∇2 − m0

2c4

h2

)
�. (A.2)
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Introducing the linear combinations

�+ = 1

2

(
� + ih

m0c2
�

)
, �− = 1

2

(
� − ih

m0c2
�

)
(A.3)

the Klein–Gordon equation is seen to be equivalent to a pair of coupled differential
equations:

ih
∂

∂t
�+ = −h2∇2

2m0
(�+ + �−) + m0c

2�+

ih
∂

∂t
�− = h2∇2

2m0
(�+ + �−) − m0c

2�−. (A.4)

Equation (A.4) can be written in a two-component language as

ih
∂

∂t

(
�+
�−

)
= Ĥ FV

0

(
�+
�−

)
, (A.5)

with the Feshbach–Villars Hamiltonian for the free particle, Ĥ FV
0 , given by

Ĥ FV
0 =

(
m0c

2 + p̂2

2m0

p̂2

2m0

− p̂2

2m0
−m0c

2 − p̂2

2m0

)
= m0c

2σz + p̂2

2m0
σz + i

p̂2

2m0
σy. (A.6)

For a free nonrelativistic particle with kinetic energy � m0c
2, it is seen that �+

is large compared to �−.
In presence of an electromagnetic field, the interaction is introduced through

the minimal coupling

p̂ −→ π̂ = p̂ − qA, ih
∂

∂t
−→ ih

∂

∂t
− qφ. (A.7)

The corresponding Feshbach–Villars form of the Klein–Gordon equation becomes

ih
∂

∂t

(
�+
�−

)
= Ĥ FV

(
�+
�−

)
(

�+
�−

)
= 1

2

(
� + 1

m0c2

(
ih ∂

∂t
− qφ

)
�

� − 1
m0c2

(
ih ∂

∂t
− qφ

)
�

)
Ĥ FV = m0c

2σz + Ê + Ô

Ê = qφ + π̂2

2m0
σz, Ô = i

π̂2

2m0
σy. (A.8)

As in the free-particle case, in the nonrelativistic situation �+ is large compared
to �−. The even term Ê does not couple �+ and �−, whereas Ô is odd which
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couples �+ and �−. Starting from (A.8), the nonrelativistic limit of the Klein–
Gordon equation, with various correction terms, can be understood using the
Foldy–Wouthuysen technique (see e.g., Bjorken and Drell, 1964).

It is clear from the aforementioned discussion that we have just adopted the
technique mentioned earlier for studying the z-evolution of the Klein–Gordon
wave function of a charged-particle beam in an optical system comprising a
static electromagnetic field. The additional feature of our formalism is the ex-
tra approximation of dropping σz in an intermediate stage to take into account
the fact that we are interested only in the forward-propagating beam along the
z-direction.

APPENDIX B: FOLDY–WOUTHUYSEN TRANSFORMATION

In the traditional scheme, the purpose of expanding the light optics
Hamiltonian Ĥ = −(n2(r) − p̂2

⊥)1/2 in a series using ( 1
n2

0
p̂2

⊥) as the expansion
parameter is to understand the propagation of the quasi-paraxial beam in terms
of a series of approximations (paraxial + nonparaxial). Similar is the situation in
the case of the charged-particle optics. Let us recall that in relativistic quantum
mechanics too one has a similar problem of understanding the relativistic wave
equations as the nonrelativistic approximation plus the relativistic correction terms
in the quasi-relativistic regime. For the Dirac equation (which is first order in
time), this is done most conveniently using the Foldy–Wouthuysen transformation
leading to an iterative diagonalization technique.

The main framework of the formalism of optics, used here (and in the charged-
particle optics) is based on the transformation technique of the Foldy–Wouthuysen
theory which casts the Dirac equation in a form displaying the different interaction
terms between the Dirac particle and an applied electromagnetic field in a nonrel-
ativistic and easily interpretable form (see Foldy and Wouthuysen, 1950; Pryce,
1948; Tani, 1951; Acharya and Sudarshan, 1960, for a general discussion of the
role of the Foldy–Wouthuysen-type transformations in particle interpretation of
relativistic wave equations). In the Foldy–Wouthuysen theory, the Dirac equation
is decoupled through a canonical transformation into two two-component equa-
tions: one reduces to the Pauli equation in the nonrelativistic limit and the other
describes the negative-energy states.

Let us describe here briefly the standard Foldy–Wouthuysen theory so that
the way it has been adopted for the purposes of the earlier studies in optics will be
clear. Let us consider a charged-particle of rest-mass m0, charge q in the presence
of an electromagnetic field characterized by E = −∇φ − ∂

∂t
A and B = ∇ × A.

Then the Dirac equation is

ih
∂

∂t
�(r, t) = ĤD�(r, t) (B.1)
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ĤD = m0c
2β + qφ + cα · π̂

= m0c
2β + Ê + Ô

Ê = qφ

Ô = cα · π̂ , (B.2)

where

α =
[

0 σ

σ 0

]
, β =

[
11 0
0 −11

]
, 11 =

[
1 0
0 1

]
,

σ =
[
σx =

[
0 1
1 0

]
, σy =

[
0 −i

i 0

]
, σz =

[
1 0
0 −1

]]
. (B.3)

with π̂ = p̂ − q A, p̂ = −ih∇, and π̂2 = (
π̂2

x + π̂2
y + π̂2

z

)
.

In the nonrelativistic situation, the upper pair of components of the Dirac
Spinor � are large compared to the lower pair of components. The operator Ê
which does not couple the large and small components of � is called ‘even’ and
Ô is called an ‘odd’ operator, which couples the large to the small components.
Note that

βÔ = −Ôβ, βÊ = Êβ. (B.4)

Now, the search is for a unitary transformation, � ′ = � −→ Û�, such that the
equation for � ′ does not contain any odd operator.

In the free particle case (with φ = 0 and π̂ = p̂), such a Foldy–Wouthuysen
transformation is given by

� −→ � ′ = ÛF�

ÛF = eiŜ = eβα ·̂pθ , tan 2|̂p|θ = |̂p|
m0c

. (B.5)

This transformation eliminates the odd part completely from the free particle Dirac
Hamiltonian, reducing it to the diagonal form:

ih
∂

∂t
� ′ = eiŜ(m0c

2β + cα · p̂)e−iŜ� ′

=
(

cos |̂p|θ + βα · p̂
|̂p| sin |̂p|θ

)
(m0c

2β + cα · p̂)

×
(

cos |̂p|θ − βα · p̂
|̂p| sin |̂p|θ

)
� ′

= (m0c
2 cos 2|̂p|θ + c|̂p| sin 2|̂p|θ )β� ′

= (√
m2

0c
4 + c2p̂2

)
β � ′. (B.6)
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In the general case, when the electron is in a time-dependent electromag-
netic field it is not possible to construct an exp(iŜ), which removes the odd
operators from the transformed Hamiltonian completely. Therefore, one has to
be content with a nonrelativistic expansion of the transformed Hamiltonian in a
power series in 1/m0c

2 keeping through any desired order. Note that in the non-
relativistic case, when |p| � m0c, the transformation operator ÛF = exp(iŜ) with
Ŝ ≈ −iβÔ/2m0c

2, where Ô = cα · p̂ is the odd part of the free Hamiltonian. So,
in the general case, we can start with the transformation

�(1) = eiŜ1�, Ŝ1 = − iβÔ
2m0c2

= − iβα · π̂

2m0c
. (B.7)

Then, the equation for �(1) is

ih
∂

∂t
�(1) = ih

∂

∂t
(eiŜ1�) = ih

∂

∂t
(eiŜ1 )� + eiŜ1 (ih

∂

∂t
�)

=
[
ih

∂

∂t
(eiŜ1 ) + eiŜ1ĤD

]
�

=
[
ih

∂

∂t
(eiŜ1 )e−iŜ1 + eiŜ1ĤDe−iŜ1

]
�(1)

=
[
eiŜ1ĤDe−iŜ1 − iheiŜ1

∂

∂t
(e−iŜ1 )

]
�(1)

= Ĥ
(1)
D �(1) (B.8)

where we have used the identity ∂
∂t

(eÂ)e−Â + eÂ ∂
∂t

(e−Â) = ∂
∂t

Î = 0.
Now, using the identities

eÂB̂e−Â = B̂ + [
Â, B̂

] + 1

2!

[
Â,

[
Â, B̂

]] + 1

3!

[
Â,

[
Â,

[
Â, B̂

]]]
+ · · · eÂ(t) ∂

∂t
(e−Â(t))

=
(

1 + Â(t) + 1

2!
Â(t)

2 + 1

3!
Â(t)

3 · · ·
)

× ∂

∂t

(
1 − Â(t) + 1

2!
Â(t)

2 − 1

3!
Â(t)

3 · · ·
)

=
(

1 + Â(t) + 1

2!
Â(t)

2 + 1

3!
Â(t)

3 · · ·
)

×
(

−∂Â(t)

∂t
+ 1

2!

{
∂Â(t)

∂t
Â(t) + Â(t)

∂Â(t)

∂t

}
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− 1

3!

{
∂Â(t)

∂t
Â(t)

2 + Â(t)
∂Â(t)

∂t
Â(t) + Â(t)

2 ∂Â(t)

∂t

}
· · ·

)
≈ −∂Â(t)

∂t
− 1

2!

[
Â(t),

∂Â(t)

∂t

]
− 1

3!

[
Â(t),

[
Â(t),

∂Â(t)

∂t

]]
− 1

4!

[
Â(t),

[
Â(t),

[
Â(t),

∂Â(t)

∂t

]]]
, (B.9)

with Â = iŜ1, we find

Ĥ
(1)
D ≈ ĤD − h

∂Ŝ1

∂t
+ i

[
Ŝ1, ĤD − h

2

∂Ŝ1

∂t

]
− 1

2!

[
Ŝ1,

[
Ŝ1, ĤD − h

3

∂Ŝ1

∂t

]]
− i

3!

[
Ŝ1,

[
Ŝ1,

[
Ŝ1, ĤD − h

4

∂Ŝ1

∂t

]]]
. (B.10)

Substituting in (B.10), ĤD = m0c
2β + Ê + Ô, simplifying the right-hand side

using the relations βÔ = −Ôβ and βÊ = Êβ and collecting everything together,
we have

Ĥ
(1)
D ≈ m0c

2β + Ê1 + Ô1

Ê1 ≈ Ê + 1

2m0c2
βÔ2 − 1

8m2
0c

4

[
Ô,

(
[Ô, Ê] + ih

∂Ô
∂t

)]
− 1

8m3
0c

6
βÔ4

Ô1 ≈ β

2m0c2

(
[Ô, Ê] + ih

∂Ô
∂t

)
− 1

3m2
0c

4
Ô3, (B.11)

with Ê1 and Ô1 obeying the relations βÔ1 = −Ô1β and βÊ1 = Ê1β exactly like
Ê and Ô. It is seen that while the term Ô in ĤD is of order zero with respect to
the expansion parameter 1/m0c

2 (i.e. Ô = O((1/m0c
2)0)), the odd part of Ĥ

(1)
D ,

namely Ô1, contains only terms of order 1/m0c
2 and higher powers of 1/m0c

2

(i.e., Ô1 = O((1/m0c
2))).

To reduce the strength of the odd terms further in the transformed Hamiltonian
a second Foldy–Wouthuysen transformation is applied with the same prescription:

�(2) = eiŜ2�(1),
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Ŝ2 = − iβÔ1

2m0c2

= − iβ

2m0c2

[
β

2m0c2

(
[Ô, Ê] + ih

∂Ô
∂t

)
− 1

3m2
0c

4
Ô3

]
. (B.12)

After this transformation,

ih
∂

∂t
�(2) = Ĥ

(2)
D �(2), Ĥ

(2)
D = m0c

2β + Ê2 + Ô2

Ê2 ≈ Ê1, Ô2 ≈ β

2m0c2

([
Ô1, Ê1

] + ih
∂Ô1

∂t

)
, (B.13)

where now, Ô2 = O((1/m0c
2)2). After the third transformation

�(3) = eiŜ3 �(2), Ŝ3 = − iβÔ2

2m0c2
, (B.14)

we have

ih
∂

∂t
�(3) = Ĥ

(3)
D �(3), Ĥ

(3)
D = m0c

2β + Ê3 + Ô3

Ê3 ≈ Ê2 ≈ Ê1, Ô3 ≈ β

2m0c2

(
[Ô2, Ê2] + ih

∂Ô2

∂t

)
, (B.15)

where Ô3 = O((1/m0c
2)3). So, neglecting Ô3,

Ĥ
(3)
D ≈ m0c

2β + Ê + 1

2m0c2
βÔ2

− 1

8m2
0c

4

[
Ô,

(
[Ô, Ê] + ih

∂Ô
∂t

)]

− 1

8m3
0c

6
β

Ô4 +
(

[Ô, Ê] + ih
∂Ô
∂t

)2
 (B.16)

It may be noted that starting with the second transformation successive (Ê, Ô)
pairs can be obtained recursively using the rule

Êj = Ê1
(
Ê → Êj−1, Ô → Ôj−1

)
Ôj = Ô1

(
Ê → Êj−1, Ô → Ôj−1

)
, j > 1, (B.17)

and retaining only the relevant terms of desired order at each step.
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With Ê = qφ and Ô = cα · π̂ , the final reduced Hamiltonian (B.16) is, to the
order calculated,

Ĥ
(3)
D = β

(
m0c

2 + π̂2

2m0
− p̂4

8m3
0c

6

)
+ qφ − qh

2m0c
β� · B

− iqh2

8m2
0c

2
� · curl E − qh

4m2
0c

2
� · E × p̂ − qh2

8m2
0c

2
div E, (B.18)

with the individual terms having direct physical interpretations. The terms in the
first parenthesis result from the expansion of

√
m2

0c
4 + c2π̂2 showing the effect of

the relativistic mass increase. The second and third terms are the electrostatic and
magnetic dipole energies. The next two terms, taken together (for hermiticity),
contain the spin–orbit interaction. The last term, the so-called Darwin term, is
attributed to the zitterbewegung (trembling motion) of the Dirac particle: because
of the rapid coordinate fluctuations over distances of the order of the Compton
wavelength (2πh/m0c), the particle sees a somewhat smeared out electric poten-
tial.

It is clear that the Foldy–Wouthuysen transformation technique expands
the Dirac Hamiltonian as a power series in the parameter 1/m0c

2, enabling the
use of a systematic approximation procedure for studying the deviations from
the nonrelativistic situation. We note the analogy between the nonrelativistic
particle dynamics and paraxial optics:

Standard Dirac equation Beam-optical form

m0c
2β + ÊD + ÔD −n0σz + Ê + Ô

m0c
2 −n0

Positive energy Forward propagation
Nonrelativistic, |π̂ | � m0c Paraxial beam, |̂p⊥| � n0

Nonrelativistic motion + relativistic corrections Paraxial behavior + aberration corrections

Noting the earlier analogy, the idea of Foldy–Wouthuysen form of the Dirac
theory has been adopted to study the paraxial optics and deviations from it by
first casting the Maxwell equations in a spinor form resembling exactly the Dirac
equations (B.1) and (B.2) in all respects: i.e., a multicomponent � having the
upper half of its components large compared to the lower components and the
Hamiltonian having an even part (Ê), an odd part (Ô), a suitable expansion pa-
rameter, (|̂p⊥|/n0 � 1) characterizing the dominant forward propagation and a
leading term with a β coefficient (σz in our formalism) commuting with Ê and
anticommuting with Ô. The additional feature of our formalism is to return finally
to the original representation after making an extra approximation, dropping σz
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from the final reduced optical Hamiltonian, taking into account the fact that we
are primarily interested only in the forward-propagating beam.

APPENDIX C: THE MAGNUS FORMULA

The Magnus formula is the continuous analogue of the famous Baker–
Campbell–Hausdorff (BCH) formula

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂]+ 1

12 {[[Â,Â],B̂]+[[Â,B̂],B̂]}+ ··· . (C.1)

Let it be required to solve the differential equation

∂

∂t
u(t) = Â(t)u(t) (C.2)

to get u(T ) at T > t0, given the value of u(t0); the operator Â can represent any
linear operation. For an infinitesimal �t , we can write

u(t0 + �t) = e�tÂ(t0)u(t0). (C.3)

Iterating this solution we have

u(t0 + 2�t) = e�tÂ(t0+�t)e�tÂ(t0)u(t0)

u(t0 + 3�t) = e�tÂ(t0+2�t)e�tÂ(t0+�t)e�tÂ(t0)u(t0) · · · and so on. (C.4)

If T = t0 + N�t we would have

u(T ) =
{

N−1∏
n=0

e�tÂ(t0+n� t)

}
u(t0). (C.5)

Thus, u(T ) is given by computing the product in (C.5) using successively the
BCH formula (C.1) and considering the limit �t −→ 0, N −→ ∞ such that
N�t = T − t0. The resulting expression is the Magnus formula (Magnus, 1954):

u(T ) = T̂ (T , t0)u(t0)

T (T , t0) = exp

{∫ T

t0

dt1 Â(t1)

+1

2

∫ T

t0

dt2

∫ t2

t0

dt1 [Â(t2), Â(t1)]

+1

6

∫ T

t0

dt3

∫ t3

t0

dt2

∫ t2

t0

dt1 ([[Â(t3), Â(t2)], Â(t1)]

+[[Â(t1), Â(t2)], Â(t3)]) + · · ·
}
. (C.6)
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To see how the Eq. (C.6) is obtained, let us substitute the assumed form of
the solution, u(t) = T̂ (t, t0) u (t0), in (C.2). Then, it is seen that T̂ (t, t0) obeys the
equation

∂

∂t
T̂ (t, t0) = Â(t)T (t, t0), T̂ (t0, t0) = Î . (C.7)

Introducing an iteration parameter λ in (C.7), let

∂

∂t
T̂ (t, t0; λ) = λÂ(t)T̂ (t, t0; λ), (C.8)

T̂ (t0, t0; λ) = Î , T̂ (t, t0; 1) = T̂ (t, t0). (C.9)

Assume a solution of (C.8) to be of the form

T̂ (t, t0; λ) = e�(t,t0;λ) (C.10)

with

�(t, t0; λ) =
∞∑

n=1

λn�n(t, t0), �n(t0, t0) = 0 for all n. (C.11)

Now, using the identity (Wilcox, 1967)

∂

∂t
e�(t,t0;λ) =

{∫ 1

0
dses�(t,t0;λ) ∂

∂t
�(t, t0; λ)e−s�(t,t0;λ)

}
e�(t,λ), (C.12)

one has ∫ 1

0
dses�(t,t0;λ) ∂

∂t
�(t, t0; λ)e−s�(t,t0;λ) = λÂ(t). (C.13)

Substituting in (C.13) the series expression for �(t, t0; λ) (C.11), expanding the
left-hand side using the first identity in (C8), integrating and equating the co-
efficients of λj on both sides, we get, recursively, the equations for �1(t, t0),
�2(t, t0), . . ., etc. For j = 1

∂

∂t
�1(t, t0) = Â(t), �1(t0, t0) = 0 (C.14)

and hence

�1(t, t0) =
∫ t

t0

dt1Â(t1). (C.15)

For j = 2

∂

∂t
�2(t, t0) + 1

2

[
�1(t, t0),

∂

∂t
�1(t, t0)

]
= 0, �2(t0, t0) = 0 (C.16)
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and hence

�2(t, t0) = 1

2

∫ t

t0

dt2

∫ t2

t0

dt1[Â(t2), Â(t1)]. (C.17)

Similarly,

�3(t, t0) = 1

6

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3{[[Â(t1), Â(t2)], Â(t3)]

+ [[Â(t3), Â(t2)], Â(t1)]}. (C.18)

Then, the Magnus formula in (C.6) follows from (C.9)–(C.11). Equation (32) we
have, in the context of z-evolution follows from the earlier discussion with the
identification t −→ z, t0 −→ z(1), T −→ z(2) and Â(t) −→ − i

h
Ĥo(z).

For more details on the exponential solutions of linear differential equations,
related operator techniques and applications to physical problems the reader is
referred to Wilcox (1967), Bellman and Vasudevan (1986), Dattoli et al. (1993),
and references therein.

APPENDIX D: ANALOGIES BETWEEN LIGHT OPTICS
AND CHARGED-PARTICLE OPTICS: RECENT DEVELOPMENTS

Historically, variational principles have played a fundamental role in the evo-
lution of mathematical models in classical physics, and many equations can be
derived by using them. Here the relevant examples are Fermat’s principle in optics
and Maupertuis’ principle in mechanics. The beginning of the analogy between
geometrical optics and mechanics is usually attributed to Descartes (1637), but
actually it can traced back to Ibn Al-Haitham Alhazen (965–1037) (Ambrosini
et al., 1997). The analogy between the trajectory of material particles in potential
fields and the path of light rays in media with continuously variable refractive
index was formalized by Hamilton in 1833. The Hamiltonian analogy lead to the
development of electron optics in 1920s, when Busch derived the focusing action
and a lens-like action of the axially symmetric magnetic field using the methodol-
ogy of geometrical optics. Around the same time, Louis de Broglie associated his
now famous wavelength to moving particles. Schrödinger extended the analogy
by passing from geometrical optics to wave optics through his wave equation
incorporating the de Broglie wavelength. This analogy played a fundamental role
in the early development of quantum mechanics. The analogy, on the other hand,
lead to the development of practical electron optics and one of the early inventions
was the electron microscope by Ernst Ruska. A detailed account of Hamilton’s
analogy is available in (Born and Wolf, 1999; Hawkes and Kasper, 1989).

Until very recently, it was possible to see this analogy only between the
geometrical-optic and classical prescriptions of electron optics. The reasons being
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that, the quantum theories of charged-particle beam optics have been under de-
velopment only for about a decade (Jagannathan et al., 1989; Jagannathan, 1990,
1993; Khan and Jagannathan, 1995; Jagannathan and Khan, 1996, 1997, 1998;
Conte et al., 1996; Khan, 1997) with the very expected feature of wavelength-
dependent effects, which have no analogue in the traditional descriptions of light
beam optics. With the current development of the non-traditional prescriptions
of Helmholtz optics (Khan et al., 2002) and the matrix formulation of Maxwell
optics, accompanied with wavelength-dependent effects, it is seen that the analogy
between the two systems persists. The non-traditional prescription of Helmholtz
optics is in close analogy with the quantum theory of charged-particle beam optics
based on the Klein–Gordon equation. The matrix formulation of Maxwell optics
is in close analogy with the quantum theory of charged-particle beam optics based
on the Dirac Equation (Khan, 2002).
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